Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
The Korean Journal of Parasitology ; : 421-430, 2015.
Article in English | WPRIM | ID: wpr-225155

ABSTRACT

The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (DeltaPsim) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.


Subject(s)
Humans , Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Mitochondria/drug effects , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Quinolones/pharmacology
2.
Rio de Janeiro; s.n; 2014. xvi, 197 p.
Thesis in Portuguese | LILACS | ID: biblio-971482

ABSTRACT

Protozoários são organismos unicelulares que causam várias doenças que atingem tanto humanos como animais. Essas doenças causam ônus econômicos principalmente em regiões tropicais e subtropicais. Atualmente, não existem vacinas comercialmente disponíveis e não há tratamento eficaz para tais doenças. Isso se deve ao fato dos fármacos disponíveis apresentarem muitos efeitos colaterais e estarem propensos ao desenvolvimento de resistência. A maioria desses fármacos foi descoberta através da seleção de um grande número de compostos contra parasitas íntegros. Porém, nosúltimos anos, uma nova abordagem vem ganhando espaço sob o termo de “desenho racional de fármacos”. Este termo representa a busca por compostos contra alvos moleculares específicos, visando diferenças bioquímicas e fisiológicas entre o parasita e o hospedeiro. A era pós-genômica gerou uma grande quantidade de informações quevem permitindoa identificação de novos alvos. Neste contexto, a partir de dados dos proteomas de 23 protozoários dos gêneros Entamoeba, Giardia, Trichomonas, Trypanosoma, Leishmania, Crytptosporidium, Plasmodium, Toxoplasma, Babesiae Theileria, realizamos buscas para a identificação de enzimas isofuncionais não-homólogas (NISE) que possam ser futuramente priorizadas como alvos terapêuticos. Em nossa metodologia utilizamos a ferramentaAnEnPi localmente para buscar nas seqüências proteicaspor enzimas funcionalmente análogas. Utilizando os dados provindos do KEGG, primeiro houve uma etapa de clusterização das estruturas primárias de todas as enzimas anotadas com o mesmo EC (Enzyme Comission). Para isso utilizou-se uma pontuação (score) de similaridade no BLASTP de 120, como parâmetros de corte. Encontramos 812 ECs com mais de um cluster e 1778 com um único cluster...


Protozoa are unicellular organisms that cause several diseases affecting both humans and animals. These diseases cause economic burden mainly in subtropical and tropical regions. Currently there are no commercially available vaccines and there is no effective treatment for such diseases. This is because the available drugs present many side effects and are prone to development of resistance. Most of these drugs were discovered through the selection of a large number of compounds against entire parasites. However, in recent years, a new approach has been gaining ground within the term "rational drug design". This term represents the search for compounds against specific molecular targets, aiming biochemical and physiological differences between the parasite and the host. The post-genomic era has generated a large amount of information which has been enablingidentification of new targets. In this context, from the proteomes data of 23 protozoa from genera Entamoeba, Giardia, Trichomonas, Trypanosoma, Leishmania, Crytptosporidium, Plasmodium, Toxoplasma, Babesiaand Theileria, we perform searches to identify non-homologous isofunctional enzymes (NISE) that may be in future prioritized as therapeutical targets. In our methodology we use the tool AnEnPi locally to search in protein sequences for functionally analogous enzymes. Using the data from the KEGG, there was a first clustering step of all the enzymes primary structures annotated with the same EC (Enzyme Comission). For this we used a score similarity in BLASTP of 120 as cut-off. We found 812 EC with more than one cluster and 1778 with a single cluster...


Subject(s)
Humans , Protozoan Proteins/antagonists & inhibitors , Enzyme Inhibitors
3.
Invest. clín ; 54(3): 270-283, sep. 2013. ilus
Article in Spanish | LILACS | ID: lil-740325

ABSTRACT

Mediante dos métodos de ensayo de peptidasas, uno en fase líquida y otro en fase gel (zimografía en geles), se detectó una peptidasa, en extractos proteicos crudos de epimastigotes de Trypanosoma cruzi, provenientes de un área rural de Venezuela endémica para el mal de Chagas. La peptidasa mostró actividad en el intervalo de pH comprendido entre 2,0 y 2,9. Bajo las condiciones experimentales descritas, la peptidasa resultó insensible a concentraciones usuales de inhibidores clásicos de peptidasas de tipo: serina, cisteína, metalo-peptidasas y aspártico. No obstante, a semejanza de la pepsina porcina a pH 2,9, la peptidasa es inhibida en presencia de 5mM DTT.


Through two peptidase assay methods, one in liquid-phase and another, in gel-phase (gel zymography), an acid peptidase was detected in protein crude extracts of epimastigotes of Trypanosoma cruzi, from a rural area of Venezuela where Chagas disease is endemic. The peptidase shows activity at a pH range between 2.0 and 2.9. Under the experimental conditions described, the acid peptidase was insensitive to usual concentrations of peptidase inhibitors of the types: serine, cysteine, aspartic and metallo-peptidases. Nevertheless, like porcine pepsin at pH 2.9, the peptidase was inhibited in the presence of 5mM DTT.


Subject(s)
Humans , Peptide Hydrolases/isolation & purification , Protozoan Proteins/isolation & purification , Trypanosoma cruzi/enzymology , Chagas Disease/parasitology , Endemic Diseases , Hydrogen-Ion Concentration , Hydrolysis , Hemoglobins/metabolism , Pepstatins/pharmacology , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Substrate Specificity , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/isolation & purification , Venezuela
4.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 263-269, July 2009. tab
Article in English | LILACS | ID: lil-520888

ABSTRACT

This review will focus on two general approaches carried out at the Sandler Center, University of California, San Francisco, to address the challenge of developing new drugs for the treatment of Chagas disease. The first approach is target-based drug discovery, and two specific targets, cytochrome P450 CYP51 and cruzain (aka cruzipain), are discussed. A "proof of concept" molecule, the vinyl sulfone inhibitor K777, is now a clinical candidate. The preclinical assessment compliance for filing as an Investigational New Drug with the United States Food and Drug Administration (FDA) is presented, and an outline of potential clinical trials is given. The second approach to identifying new drug leads is parasite phenotypic screens in culture. The development of an assay allowing high throughput screening of Trypanosoma cruzi amastigotes in skeletal muscle cells is presented. This screen has the advantage of not requiring specific strains of parasites, so it could be used with field isolates, drug resistant strains or laboratory strains. It is optimized for robotic liquid handling and has been validated through a screen of a library of FDA-approved drugs identifying 65 hits.


Subject(s)
Animals , Humans , Chagas Disease/drug therapy , Cysteine Proteinase Inhibitors/therapeutic use , Drug Design , Dipeptides/therapeutic use , Trypanocidal Agents/therapeutic use , Vinyl Compounds/therapeutic use , Cysteine Endopeptidases , /antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , United States , United States Food and Drug Administration
5.
Rev. argent. microbiol ; 34(2): 83-94, abr.-jun. 2002.
Article in English | LILACS | ID: lil-331800

ABSTRACT

Peroxidase/H2O2/phenothiazine systems irreversibly inhibit Trypanosoma cruzi dihydrolipoamide dehydrogenase (LADH). Inactivation of the parasite enzyme depended on (a) phenothiazine structure; (b) peroxidase nature; (c) incubation time and (d) the presence of a cation radical scavenger. With the myeloperoxidase/H2O2/system, promazine, trimeprazine, thioridazine, promethiazine, prochlorperazine, chlorpromazine and perphenazine were the most effective derivatives out of twelve phenothiazines studied. An electronegative substituent at position 2 of the phenothiazine ring such as Cl, or trifluoromethyl, propionyl and nitrile groups decreased or nullified phenothiazine activity. Myeloperoxidase/H2O2/, horseradish peroxidase/H2O2/, and myoglobin/H2O2/systems activated phenothiazines producing the corresponding cation radicals, myeloperoxidase being the most selective one with respect to phenothiazine structure. The myoglobin/H2O2/system activated phenothiazines that were scarcely active or inactivate with the MPO/H2O2/system, such as the trifluoromethyl derivatives. Production of phenothiazine cation radicals was demonstrated by optical spectroscopy. Phenothiazine cation radical stability depended on their structure as illustrated by promazine and thioridazine. Thiol compounds (GSH, N-acetyl-cysteine and penicillamine), aromatic aminoacids (L-tyrosine, L-tryptophan, and the corresponding peptides) and ascorbate scavenged phenothiazine cation radicals, thus preventing LADH inactivation. Comparison of the summarized phenothiazine effects with those of phenothiazines on T. cruzi suggest the role of cation radicals in phenothiazines chemotherapeutic actions.


Subject(s)
Animals , Humans , Cations , Dihydrolipoamide Dehydrogenase , Enzyme Inhibitors/pharmacology , Peroxidase , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanocidal Agents , Trypanosoma cruzi , Ascorbic Acid/pharmacology , Amino Acids, Aromatic/pharmacology , Free Radical Scavengers , Free Radicals , Peroxidase , Hydrogen Peroxide/metabolism , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship , Sulfhydryl Compounds , Trypanosoma cruzi
6.
Rev. argent. microbiol ; 33(1): 36-46, ene.-mar. 2001.
Article in Spanish | LILACS | ID: lil-332503

ABSTRACT

Peroxidase/H2O2/phenothiazine systems produced irreversible inhibition (inactivation) of Trypanosoma cruzi trypanothione reductase (TR). The enzyme inactivation depended on (a) the incubation time of TR with the peroxidase/H2O2/phenothiazine system; (b) the peroxidase nature and (c) the phenothiazine structure. With the more effective peroxidase/H2O2/phenothiazine systems, TR inactivation kinetics presented a relatively fast initial phase, lasting for about 10 min, in which most of the enzyme activity disappeared. This phase was followed by a slower one and, after 30 min incubation, TR was totally inactivated. Three peroxidases were assayed as catalysts of TR inactivation: the horseradish peroxidase (HRP), leukocyte myeloperoxidase (MPO) and modified myoglobin (Mb). Under comparable experimental conditions, the peroxidase system activity decreased in the given order. With HRP systems, 10 microM Thioridazine (TRDZ), Promazine (PZ), Trimeprazine (TMPZ), Prochlorperazine (PCZ), Propionylpromazine (PPZ), Chlorpromazine (CPZ) and Perphenazine (PFZ), produced 95-100 inactivation of TR. With the MPO/H2O2 systems, PZ. TRDZ and TMPZ were the most effective. Under similar experimental condition, the Mb/H2O2/PZ,/TMPZ, /TRDZ and CPZ systems effectively inactivated TR. The presence of alkylamino, piperazinyl, or piperidinyl groups in PTZ N atom (position 10) and -Cl, -CF3, -SCH3, COCH2CH3 and -CN in position C2 exerted significant influence on phenothiazine activity. Glutathione (GSH) prevented TR inactivation by the HRP/H2O2/PZ and MPO/H2O2/PZ systems. The HRP/H2O2 and MPO/H2O2/phenothiazines systems generated the corresponding cationic radicals (FTZ.+) the stability of which was limited by their conversion into phenothiazine-sulfoxides (PTZ-SO). The latter ones were inactive on TR. GSH rapidly reacted with PTZ+.; thus producing cation radical detoxication. These reactions fit in well with GSH protection of TR against the peroxidase/H2O2/phenothiazine system, as well as with the FTZ.+ role in phenothiazine cytotoxicity.


Subject(s)
Animals , Antiprotozoal Agents , NADH, NADPH Oxidoreductases , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi , Antiprotozoal Agents , Cations , Free Radicals , Glutathione , Kinetics , Molecular Structure , Oxidation-Reduction , Peroxidases , Hydrogen Peroxide/pharmacology , Phenothiazines , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship
7.
Bol. Acad. Nac. Med. B.Aires ; 78(2): 357-379, jul.-dic. 2000. tab, graf
Article in Spanish | LILACS | ID: lil-310989

ABSTRACT

La incubación de la tripanotiona reductasa (TR) de Trypanosoma cruzi con sistemas peroxidasa/H2O2/fenotiazina (FTZ) produjo la inhibición irreversible (inactivación) de TR. El grado de inactivación dependió de: (a) el tiempo de incubación de TR con el sistema peroxidasa/H2O2/FTZ; (b) la naturaleza de la peroxidasa y (c) la estructura de la FTZ. Con las FTZ más activas, la cinética de la inactivación presentó una fase inicial no mayor de 10 minutos, durante la cual TR perdió cerca del 90 por ciento de su actividad. Esa fase fue seguida por otra más lenta, y después de 30 minutos de incubación, TR fue completamente inactiva. Se ensayaron tres peroxidasas, a saber: la peroxidasa de rábano (HRP), la mieloperoxidasa de leucocitos (MPO) y la mioglobina modificada (Mb). En condiciones experimentales comparables, la actividad de las peroxidasas como componentes de los sistemas ensayados decreció en el orden indicado. Con el sistema HRP/H2O2/FTZ, la inactivación final de TR fue de 95-100 por ciento con Tioridazina (TRDZ), Promazina (PZ), Trimeprazina (TMPZ), Proclorpromazina (PCP), Propionilpromazina (PPZ) y Perfenazina (PFZ), todas en concentración 10 µM. Con los sistemas MPO/H2O2/FTZ, las FTZ más activas fueron PZ, TRDZ, TMPZ, PCP y Clorpromazina (CPZ). En iguales condiciones, los sistemas Mb/H2O2/FTZ también inactivaron a TR, utilizando PZ, TMPZ, TRDZ y CPZ. Grupos alquilamino, piperazinilo o piperidilo en la posición 10 (el N) y átomos o grupos -CI, -CF3, -SCH3, COCH2CH3 y -CN en la posición C2 de FTZ afectaron significativamente la actividad de las FTZs. El glutatión (GSH) previno la inactivación de TR por los sistemas HRP/H2O2/PZ y MPO/H2O2/PZ. Los sistemas HRP/H2O2/FTZ y MPO/H2O2/FTZ generaron los radicales catiónicos FTZú+, con estabilidad limitada por su conversión en fenotiazina-sulfoxidos (FTZ-SO), aparentemente inactivos sobre TR. El GSH reaccionó con los radicales catiónicos, regenerando las FTZ originales, lo que concuerda con la protección de TR por GSH frente a los sistemas peroxidasa/H2O2/PZ y, por lo tanto, con la intervención de los radicales catiónicos en la inactivación de TR por los mismos sistemas.


Subject(s)
Animals , Antiprotozoal Agents , Chagas Disease , NADH, NADPH Oxidoreductases , Phenothiazines , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi , Antiprotozoal Agents , Cations , Free Radicals , Glutathione/metabolism , Kinetics , Molecular Structure , Oxidation-Reduction , Peroxidases , Hydrogen Peroxide/pharmacology , Phenothiazines , Recombinant Fusion Proteins/antagonists & inhibitors , Structure-Activity Relationship
8.
Rev. argent. microbiol ; 32(3): 136-143, jul.-sept. 2000.
Article in English | LILACS | ID: lil-332524

ABSTRACT

Dihydrolipoamide dehydrogenase (LADH) from Trypanosoma cruzi, the causative agent of Chagas' disease, was inactivated by treatment with myeloperoxidase (MPO)-dependent systems. LADH lipoamide reductase and diaphorase activities decreased as a function of incubation time and composition of the MPO/H2O2/halide system, a transient increase preceding the loss of diaphorase activity. Iodide, bromide, thiocyanide and chloride were effective components of MPO/H2O2 or MPO/NADH systems. Catalase prevented LADH inactivation by the MPO/NADH/halide systems in agreement with H2O2 production by NADH-supplemented LADH. Thiol compounds (L-cysteine, N-acetylcysteine, penicillamine, N-(2-mercaptopropionylglycine) and Captopril prevented LADH inactivation by the MPO/H2O2/NaCl system and by NaOCl, thus supporting HOCl as agent of the MPO/H2O2/NaCl system. MPO/H2O2/NaNO2 and MPO/NADH/NaNO2 inactivated LADH, the reaction being prevented by MPO inhibitors and thiol compounds. T. cruzi LADH was affected by MPO-dependent systems like myocardial LADH, allowance being made for the variation of the diaphorase activity and the greater sensitivity of the T. cruzi enzyme to MPO/H2O2/halide systems.


Subject(s)
Animals , Humans , Hypochlorous Acid/pharmacology , Dihydrolipoamide Dehydrogenase , Neutrophils/physiology , Nitrites , Peroxidase , Protozoan Proteins/antagonists & inhibitors , Respiratory Burst , Trypanosoma cruzi , Acetylcysteine/pharmacology , Thioctic Acid/analogs & derivatives , Thioctic Acid/metabolism , Bromides , Captopril , Catalase , Cysteine/pharmacology , Sodium Chloride/pharmacology , Sodium Compounds/pharmacology , Cytotoxicity, Immunologic , Reactive Oxygen Species/metabolism , Glutathione , Glycine , Kinetics , Myocardium , NAD , Neutrophils/enzymology , Oxidation-Reduction , Penicillamine , Hydrogen Peroxide/pharmacology , Recombinant Proteins/antagonists & inhibitors , Sulfhydryl Compounds , Tryptophan , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL